exact and numerical solutions for nonlinear differential equation of jeffrey-hamel flow
نویسندگان
چکیده
منابع مشابه
New Exact Solutions for New Model Nonlinear Partial Differential Equation
In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II andmodified Padé-II equation.Themapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined PadéII and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, r...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of industrial mathematicsناشر: science and research branch, islamic azad university, tehran, iran
ISSN 2008-5621
دوره 3
شماره 1 2011
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023